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We present salient results of the analysis of the geometrical structure of a large fully equilibrated ensemble
of nearly jammed packings of linear freely jointed chains of tangent hard spheres generated via extensive
Monte Carlo simulations. In spite the expected differences due to chain connectivity, both the pair-correlation
function and the contact network for chain packings are found to strongly resemble those in packings of
monomeric hard spheres at the maximally random jammed �MRJ� state. A remarkable finding of the present
work is the tendency of chains to form closed loops at the MRJ state as a consequence of chain collapse. Our
simulations on disordered nearly jammed chain packings yield an average coordination number of 6, which
fulfills the isostaticity condition and is in excellent agreement with the corresponding simulation �A. Donev, S.
Torquato, and F. H. Stillinger, Phys. Rev. E 71, 011105 �2005�� and experimental �T. Aste, M. Saadatfar, and
T. J. Senden, Phys. Rev. E 71, 061302 �2005�� findings for jammed packings of monatomic hard spheres. An
exact correspondence between the statistical-mechanical ensembles of monomeric spheres and of hard-sphere
chains offers insights regarding the structure and topology of the contact network of hard-sphere systems at the
MRJ state.
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I. INTRODUCTION

In the last years structural properties and topological char-
acteristics of amorphous jammed �1� or nearly jammed en-
samples of hard spheres and other hard-body objects have
been the subject of extensive experimental, theoretical, and
modeling research �2–15�, following the classical studies by
Bernal and co-workers �16–18� on dense random packings.
Furthermore, by introducing the concept of the maximally
random jammed state �MRJ�, Torquato et al. �1� established
the basis for a more rigorous statistical-mechanical descrip-
tion of the random close packing than previously available
�18�. The increased scientific interest for model ordered or
random assemblies of hard-core species is not surprising
given the significant impact in a wide range of processes and
applications of physical systems from colloids, emulsions,
and granular materials to mathematics and communication
theory �19–23�.

Compared to monatomic analogs, random packings of
freely jointed chains of tangent hard spheres present signifi-
cant difficulties in their simulation-based studies arising pri-
marily from the intramolecular holonomic constraints �chain
connectivity� and from the long relaxation times due to slug-
gish reptation dynamics �24� owing to intermolecular topo-
logical constraints. As a consequence from the modeling per-
spective, the generation and the successive full-scale
equilibration of dense hard-sphere chain systems especially
in the vicinity of the MRJ state are by no means trivial.
State-of-the-art algorithms �25–27� with well-documented
efficiency for the generation of dense or maximally jammed
random packings of monomeric hard spheres are not appli-
cable to macromolecular systems because of the imposed

chain connectivity. In addition, algorithmic schemes based
on the construction of chain assemblies from monatomic-
sphere analogs through site-bridging techniques of self-
avoiding bonds are unable to properly sample the configura-
tional space, thus leading to incorrect global and local chain
conformations and statistical averages of observables. In par-
allel, the performance of advanced Monte Carlo �MC� tech-
niques that perform exceptionally well in equilibrating ato-
mistic or coarse-grained polymer melts �28� deteriorates as
volume fractions of random hard-sphere chain assemblies
exceed the freezing transition.

While an appreciable body of modeling studies on hard-
sphere chain systems exists at dilute and intermediate vol-
ume fractions �packing densities� �29–38� the generation
and the efficient sampling of polymer configurations in the
close vicinity of the MRJ state require very extensive simu-
lations based on a novel MC suite built around advanced
chain-connectivity-altering moves �39�. Through such a MC
scheme, we were recently able to determine the MRJ state of
hard-sphere chain assemblies �40�, to analyze the effect of
concentration �packing density� on chain size �41–43�, on
structure �44�, and on the underlying network of topological
hindrance �42,43�, both as entanglements and knots. Very
recently our modeling studies were extended to track the
entropy-driven disorder-order transition of dense hard-sphere
chain systems �45�, the onset, and the growth of crystal nu-
clei and the spontaneous formation of characteristic crystal
morphologies �46�.

In the present paper, we present results and analyze the
salient features of the contact network of a large ensemble of
freely jointed chains of tangent hard spheres in the close
vicinity of the MRJ state generated through MC simulations.
We show that these jammed chain packings are particularly
useful for elucidating structural aspects in the corresponding
assemblies of monomeric hard spheres. In the Appendix we
discuss the statistical-mechanical basis of the correspondence
between jammed packings of chains of tangent hard spheres
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and packings of monatomic spheres at their MRJ. We find
that the former can, in a natural way, shed light on key fea-
tures of the structure of the latter that may, for numerical
reasons, remain elusive even to very precise analyses.

II. SIMULATION DETAILS

All reported MC simulations were conducted in the iso-
choric semigrand canonical ensemble �VTNsites�

�� for two
systems of freely jointed linear chains of tangent hard
spheres of equal size, both bearing a total of 1200 interacting
sites: �1� 100 chains of average length N=12 and �2� 50
chains of average length N=24 at two different volume frac-
tions: �=0.63 and �MRJ�0.639. Chain lengths were allowed
to fluctuate uniformly in the closed intervals N� �6,18� and
N� �12,36� for the N=12 and 24 systems, respectively. Pe-
riodic boundary conditions were applied in all dimensions of
the cubic cell and simulations were conducted with boxes of
varied length to ensure that the chain size, the packing, and
the local ordering remain unaffected by the system size. The
following mixture of MC moves was employed: simplified
end bridging �0.1%�, simplified intramolecular end bridging
�0.1%�, adaptive-bias reptation �10%�, adaptive-bias rotation
�10%�, adaptive configurational bias �20%�, adaptive-bias in-
termolecular reptation �25%�, and adaptive-bias flip �34.8%�,
where numbers in parentheses denote percentage attempt
probabilities. The number of trial positions ndis for the for-
ward and the reverse transitions for all moves executed in the
adaptive-bias pattern was set equal to ndis=70 at �=0.63 and
ndis=100 at �=�MRJ. More details about the MC scheme and
about its computational efficiency in generating and succes-
sively in equilibrating the long- and the short-range chain
characteristics as functions of packing density and average
chain length can be found in Ref. �39�. Because of the appli-
cation of the chain-connectivity-altering MC moves, the nu-
merical tolerance for the bond length constraint was set at
��=10−8 allowing bond lengths to fluctuate in the interval
�� ,�+���, where � is the collision diameter of the hard
spheres. Compared to our past studies �39–46� the present
limit for bond lengths is by four orders of magnitudes
stricter. Present data confirm previous findings �47� that the
model with fluctuating bond lengths �even with ���0.01�
does not present any appreciable differences regarding local
packing and chain size with the “pearl and necklace” freely
jointed model of strictly tangent hard spheres. Still, recent
theoretical predictions suggest that the ratio of bond length to
collision diameter affects significantly the ability of model
chains to crystallize at high densities �48�.

The MC calculations were carried out for 4.0�1011 and
2.9�1011 MC steps at �=0.63 and �=�MRJ=0.639, respec-
tively. Configurations including coordinates of the sphere
centers, chain connectivity, and system statistics were re-
corded every 1�107 steps. At �=0.639 the fraction of
spheres �so called “flippers”� that were able to perform a
minimal displacement subject to the constraints imposed by
chain connectivity and to the overlaps with all fixed spheres
in the system is less than 1%, which is a strong indication
that the system approaches the maximally random jammed
state; at �=0.63 the corresponding fraction is much higher as
approximately one out of four sites is a flipper �49�.

According to Rintoul and Torquato �50�, for long simula-
tion times, packings of monomeric hard spheres tend to crys-
tallize at all packing densities above the melting point. In
recent simulations by us, similar conclusions have been
drawn for chain assemblies of hard spheres in the concentra-
tion interval of �� �0.58,0.61� �46�. Given the above find-
ings, and since present simulations are exceedingly long �ap-
proaching trillion �1012� of MC steps�, special care was taken
to exclude from the structural analysis those parts of the MC
trajectories that could possibly undergo a disorder-order tran-
sition, as indicated by the appearance and the rapid growth of
crystal nuclei �45�, just as it is routinely done in studies of
disordered packings of monatomic hard spheres. To this end
we analyzed the local structure around each hard-sphere site
at specific system configurations �trajectory frames� by
means of the characteristic crystallographic element �CCE�
norm �40,44–46� that is able to accurately detect any orien-
tational and radial deviations from perfect order and thus
track any ordering �or disordering� transitions. Furthermore,
the CCE norm is shown to be able to distinguish with high
specificity between different competing crystal structures.
More technical details about the applicability of the CCE
norm on general atomistic and particulate systems can be
found in Ref. �45�. In the present work, we proceeded
through the Voronoi tessellation �through the qhull program
�51�� of the simulation cell and consecutively applied the
hexagonal-close-packed �HCP-� and face-centered cubic
�FCC-� CCE norms on all sites of the system for selected
frames of the MC trajectory every 1�109 steps. The infor-
mation of the HCP-CCE and the FCC-CCE norms was used
to calculate the corresponding order parameters sHCP and
sFCC �44–46�. Sites with HCP-CCE and FCC-CCE norms
below a certain threshold were univocally identified as HCP-
like and FCC-like structures, respectively �52�. Figure 1 pre-
sents the evolution of the sHCP and the sFCC order parameters
along with their sum ��c�, which can be interpreted as an

FIG. 1. �Color online� Evolution of the HCP �sHCP� and the FCC
�sFCC� order parameters and of their sum ��c=sHCP+sFCC� as func-
tions of MC steps at packing densities �=0.63 �filled symbols� and
�=�MRJ �open symbols�. Since the CCE-based order parameters are
highly discriminating, the obtained �c parameter can be interpreted
as an accurate estimate for the total degree of crystallinity.
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estimate for the total degree of crystallinity, as a function of
MC steps. It can be seen that in both cases ��=0.63 and �
=�MRJ� the fractions of sites with either HCP- or FCC-like
character change only minimally during the entire MC run.
The degree of crystallinity does not exceed 6% and 4% at
�=0.63 and �=�MRJ, respectively. We should further note
that the fluctuations of the individual order parameters and of
the total degree of crystallinity are minimal at the MRJ state,
as expected in a jammed system. Our observed values for the
HCP and the FCC populations of sites are of the same order
of magnitude as those found by Aste et al. �53� from x-ray
computed tomography on samples of monosized spheres.
Their analysis based on the rotationally invariant measures
of combinations of spherical harmonics �54� suggest HCP
and FCC fractions of 8% and 3%, respectively, along with a
significant portion of sites with an unidentified local environ-
ment �53�. From the data shown in Fig. 1 on the evolution of
the individual order parameters and of their sum, it is clear
that our MC-generated chain packings remain disordered
�random� in all recorded system configurations at both pack-
ing densities �55�.

III. STRUCTURAL FEATURES OF NEARLY JAMMED
RANDOM PACKING OF HARD-SPHERE CHAINS

Donev et al. �2� and Aste et al. �10� have presented very
thorough computational and experimental results, respec-
tively, for the pair radial distribution function g�r� for nearly
and maximally jammed disordered packings of single hard
spheres. The pair distribution function is a widely used ori-
entationally averaged structural descriptor, and its accurate
calculation is of vital importance for the understanding of
structural features �10�. Donev et al. �2� convincingly
showed that, in the jamming limit, g�r→1+� separates in a
singular, ��r�, or “contact” contribution, and a “background,”
or near-contact contribution. Their results also confirmed the
isostaticity of MRJ packings and the splitting of the second
peak in g�r� as a clear signature of jamming. Recently, beau-
tifully detailed and accurate x-ray tomography results on the
three-dimensional structure of large packings of monosized
spheres with volume fractions up to the MRJ value have
been reported by Aste et al. �10� They have derived the radial
distribution function and observed a strong peak at a distance
equal to the particle diameter �, followed by a minimum at
around 1.4� and two additional peaks at greater separations
r=�3� and r�2� �10�. Their findings confirmed the behav-
ior for g�r� predicted by Donev et al. �2� in the region be-
tween r�� and r�1.4�.

Although it seems natural that the ensemble-average
properties of MRJ packings of monomeric spheres and of
chains must differ due to chain connectivity, it is perhaps not
so obvious that they must share several key features as well.
The ultimate reason for the similarities is the existence of a
correspondence between configurations of monomeric
spheres and of hard-sphere chains. As discussed in the Ap-
pendix, structural features, for example, peak positions in
g�r�, although weighted quantitatively differently in the two
ensembles, e.g., different peak intensities for g�r� in �ss

MRJ

and �chains
MRJ �see the Appendix for nomenclature�, must nec-

essarily be geometrically identical for both systems. For ex-
ample, the arrangement of spheres and the exact radial posi-
tion for second peak splitting in g�r� must be the same in
both ensembles. A qualitative illustration of the aforemen-
tioned correspondence between configurations of monomeric
�single� hard spheres and of hard-sphere chains is shown in
Fig. 2.

Combinatorial geometry methods �56� are able to find
members of �chains

MRJ �solutions to the sphere connectivity
problem�, but these methods do not respect microscopic re-
versibility, nor do they preserve phase-space volume. The
challenge, which was solved by the introduction of the MC
protocol of Refs. �39,40�, was to generate members of �chains

MRJ

with their correct statistical-mechanical weight. We have to
note that even by employing the proposed MC scheme
�39–46� much greater computational effort is required to
generate chain configurations as compared to monomeric
sphere analogs, especially in the close vicinity of the MRJ
state. For example, all simulations reported here and above
all those for the generation and the relaxation at the highest
volume fraction required wall-clock CPU times that reached
the order of many months. As a direct consequence, the
structures of �chains

MRJ generated here are jammed �or more pre-
cisely nearly jammed� to a less strict numerical tolerance
�O�10−4�� than those in Ref. �2� where jamming for mon-
atomic hard spheres is detected to almost machine precision
�O�10−12��. This however does not invalidate the results to be
presented, since the correspondence between configurations
is equally valid at both tolerance levels. Hence, as argued in
the Appendix, the geometric features observed in the chain
system are translatable to the MRJ state of monomeric hard
spheres. While the related computational cost is significantly
increased, we have embarked on simulations of hard-sphere
chains at the MRJ state where the precision set for the de-
tection of jamming is comparable with the one in Ref. �2�
�i.e., close to machine precision�.

In the following we will exploit the relation between
�ss

MRJ and �chains
MRJ to extract structural information about mo-

nomeric �single� hard-sphere packings at the MRJ state.
Donev et al. �2� recently presented what is probably the most
careful in-depth numerical analysis of the characteristics of

FIG. 2. The ensembles �chains
MRJ and �ss

MRJ for hard-sphere chains
and single �monatomic� hard spheres, respectively. Each member
�R j ,Ck���chains

MRJ is uniquely mappable on a member of �ss
MRJ by

simply deleting chain connectivity. �chains
MRJ splits naturally in equiva-

lent classes. Each class contains all chain configurations that differ
in connectivity Ck but are mapped on the same R j.
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the pair-correlation function g�r� of disordered nearly
jammed packings of monatomic hard spheres. They were
able to generate maximally jammed random packings of hard
spheres by event-driven molecular dynamics �57� �a modifi-
cation of the Lubachevsky-Stillinger algorithm �27,58��. The
jammed character of these packings was subsequently tested
by a “pressure” leak procedure �1�. An extensive series of
structural analyses were then performed on these high-
quality jammed packings. Prominent among other findings
was the clear separation of the singular, ��r�, or contact con-
tribution at r=1 �sphere diameter is taken as unit length �
=1 from now on� from the background, or near-contact con-
tribution, the confirmation of the isostaticity of MRJ pack-
ings, and the splitting of the second peak in g�r� as a clear
signature of jamming.

In our recent simulations �40�, the overall similarity be-
tween the pair-correlation function for monatomic hard
spheres and for hard-sphere chains in the vicinity of the MRJ
state was shown. It was established that for separations
r	1.1, gchains�r� and gss�r� for chains and for monomeric
spheres are indistinguishable, within a small statistical uncer-
tainty �
2.5%�. Figure 3 shows the intermolecular pair ra-
dial distribution function ginter�r�, the intramolecular pair
density function wintra�r�, and the total pair radial distribution
gtotal�r�, as obtained from present MC simulations on hard-
sphere chains at the MRJ state, as functions of distance from
contact �r /��−1, focusing in the vicinity of the split-second
peak. Our simulation findings for gtotal�r� away from contact
�reported in Fig. 3�c�� are in perfect qualitative and quanti-
tative agreement with the simulation data from Donev et al.
�Fig. 9 of �2�� and experimental ones by Aste et al. �Fig. 13
of �10�� for monomeric hard spheres. In particular, we were
able to accurately identify the two characteristic peaks with
the accompanying discontinuities at r=�3� and r=2�,
which is another strong indication of the simulated random
chain assemblies that have reached their jammed state in a
fashion analogous to monatomic hard-sphere packings. Fur-
thermore, pairs of edge-sharing, coplanar, approximately
equilateral triangles were found to account quite completely
for the observed split-second peak in g�r�.

The inset of Fig. 4 shows the bending angle distribution
P���, where �=cos−1��r�i+1−r�i� · �r�i+2−r�i+1�� and r�’s are posi-
tion vectors of consecutive spheres. In an analogous fashion,
the inset of Fig. 5 shows the torsion angle distribution P���,
where

� = cos−1

�
��r�i+1 − r�i� � �r�i+2 − r�i+1�� · ��r�i+3 − r�i+2� � �r�i+2 − r�i+1��
��r�i+1 − r�i� � �r�i+2 − r�i+1�� · ��r�i+3 − r�i+2� � �r�i+2 − r�i+1��

.

Although the intensities of the maxima in P��� and P���
must be different from those in monomeric sphere MRJ
packings, their positions are in perfect agreement as expected
from the arguments presented in the Appendix. Their sharp-
ness makes it also possible to unequivocally attribute them to
specific geometric arrangements: the maxima at �=60° and
120° in P��� correspond to two coplanar equilateral triangles
sharing an edge and to three consecutive spheres on the ver-
tices of one equilateral triangle, respectively. In the later case

(b)

(a)

(c)

FIG. 3. �Color online� �a� Intermolecular pair radial distribution
function ginter�r�, �b� intramolecular pair density function wintra�r�,
and �c� total pair radial distribution function gtotal�r� as obtained
from MC simulations on the N=24 hard-sphere chain system at the
MRJ state. The plot is magnified so as to focus around the split-
second peak. Also shown as guides for the eye are vertical lines to
indicate the discontinuities at r=�3� and r=2�. Noise in the dis-
tribution is due to the very narrow binning. In more standard plots,
bin width is usually two orders of magnitude larger, resulting in
very smooth g�r�, see for example �39,40,43,44� .
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��=120°� where the triplet forms the equilateral triangle
spheres i and i+2 become perfectly tangent, each increases
the number of contacts for the other sphere; consequently,
the 1–3 arrangement of �c=120° can be considered as an
effective contact angle. Similarly, P��� exhibits maxima cen-
tered around values of the torsion angle that correspond to
four consecutive spheres occupying the vertices of vertex or
edge sharing tetrahedral �44� leading to characteristic tor-
sional conformations as denoted by the peaks at 0°, 54.7°,
70.5°, and 109.5°.

In the main panel of Fig. 4 we present in a double-
logarithmic plot the probability distribution as a function of
the divergence from the contact angle ��c=120°� as obtained
from present MC simulations at �=0.63 and �=�MRJ. Par-
ticularly noteworthy is the sharp increase in the population of
sites with bending conformations equal to the contact angle
as we reach the vicinity of the MRJ state. The intensity in
P��� at the MRJ state ��MRJ=0.639� around �c=120° is
found to be by a factor of approximately 30 higher than the
corresponding one at �=0.63. Similar conclusions can be
drawn for the sharpness of the divergence at �=60°, which is
directly comparable to that obtained in Ref. �2� for packings
of monatomic hard spheres jammed to gaps on the order of
O�10−12�. Identical trends are further observed for the 1–4
intramolecular packing arrangements as shown in the main
panel of Fig. 5 for the torsion angle distribution P���. Here,
the intensity at characteristic peak of �c=109.5° as we move
from �=0.63 to �=�MRJ is increased by a factor of around 3.
Albeit the fact that the difference in the intensities for the
global maximum of the torsion angle is significantly smaller
than the corresponding one ��30� for the bending contact

angle, it is still appreciably evident. From the results de-
picted in Figs. 4 and 5, it is thus well established that sig-
nificant changes occur in the bending and the torsional ar-
rangements as the jammed state of random chain packings is
approached.

The main objective of the present work is not to describe
these arrangements in detail �which has been the focus of
Ref. �44��, but to show that chain connectivity affords an
unprecedented clear view of the contact network in MRJ
assemblies of monatomic hard spheres. The reason is that the
intramolecular contact between successive spheres along a
chain makes a physically correct non-negligible contribution
to all geometrical descriptors, thus yielding insights that
could only be attained with the most precisely jammed pack-
ings of monomeric hard spheres �as, for example, those re-
ported in Ref. �2��.

Jammed random packings of hard-sphere chains offer
more obvious advantages in the detection of structural fea-
tures involving higher number of spheres. A good example is
the shared-neighbor analysis �2�. Thanks to the high quality
of their strictly jammed packings, the modeling study of Ref.
�2� represents the most precise investigation of the contact
network of disordered hard-sphere assemblies to date. Unlike
in the studies of Anikeenko and Medvedev �59�, Donev et al.
�2� could only identify very few tetrahedra in their shared-
neighbor analysis. At a first sight this finding seems in partial
contradiction with observations of extensive polytetrahedral
structuring �59� in MRJ packings, although this discrepancy
is due to the �intentional� loose definition of neighbors in

FIG. 5. �Color online� Inset: probability distribution for the tor-
sion angle � from MC simulations for the N=24 system at volume
fractions �=0.63 and �=�MRJ�0.639. Torsion angle is defined
as the angle between the planes formed by successive triplets of
spheres along the chain; all-trans conformation corresponds to 0°.
As in Fig. 3, noise in the distribution is due to the very narrow
binning. Main: double-logarithmic plot of the probability distribu-
tion as a function of the divergence from the characteristic torsion
angle at �c=109.5° for �top/right axis�: �	�c and �bottom/left
axis�: �
�c.

FIG. 4. �Color online� Inset: probability distribution for the
supplement of bending angle � from MC simulations for the
N=24 system at volume fractions �=0.63 and �=�MRJ�0.639.
Bending angle is defined as the angle between two successive bonds
along the chain. As in Fig. 3, noise in the distribution is due to the
very narrow binning. Main: double-logarithmic plot of the probabil-
ity distribution as a function of the divergence from the contact
angle at �c=120° �since this value of the bending angle ensures
contact for intramolecular neighbors that are separated by two
bonds�.
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Ref. �59�. Our present analysis of ensembles of chains in the
close vicinity of the MRJ state tends to support the conclu-
sions drawn in Ref. �2�. For example, the inset of Fig. 6
shows the orientation-averaged probability distribution of the
end-to-end vector 4r2W�r�, for chains of lengths N=6, 12,
and 18 at the MRJ state. The most prominent peaks in these
distributions are centered around the values corresponding to

consecutive spheres along the chain occupying sites on tet-
rahedra that share vertices, edges, or, much more rare, faces.
Apart from confirming the scarcity of truly polytetrahedral
aggregates �2�, our analysis uncovers a remarkable feature:
the distribution of the end-to-end vector displays a strong
maximum at r=1, i.e., chains have an appreciable tendency
to form closed loops. The main panel of Fig. 6 shows the
probably divergent character of this contribution as the MRJ
state is approached. The effect is of course more pronounced
for short chains �N=6�, but it is undeniably present for all
chain lengths, as shown by the sharp increase in the prob-
ability of the end-to-end vector at r=1. The existence of
contact rings at the MRJ is a consequence of “chain col-
lapse,” and of the prevalence of very compact chain confor-
mations. In turn, the sharp decrease in chain dimensions, as
quantified by several metrics of size at high volume fractions
and especially in the marginal regime �41–44� is attributed to
the adoption of specific bending and torsion angles corre-
sponding to 1–3 and 1–4 intermolecular interactions, respec-
tively. This tendency for the adoption of very compact con-
formations for the bonded geometry near the MRJ state can
be further seen in the corresponding distributions of Figs. 4
and 5.

The structural characteristic of chain compactness and the
formation of chain loops are vividly shown in Fig. 7 where
arandomly selected configuration of the N=12 system at the
MRJ state is shown with the coordinates of sphere centers
subjected to periodic boundary conditions �Fig. 7�a�� and
fully unwrapped in space �Fig. 7�b��. In addition, in Figs.
7�c� and 7�d� only the chains that form rings are shown in
atomistic detail �panel �c�� and with the backbones shown as

FIG. 6. �Color online� Inset: end-to-end vector distribution
W�R� for chains of lengths N=6, 12, and 18 at �=�MRJ�0.639.
Main: linear-logarithmic scale of W�R� versus R in the vicinity
of the contact distance for chains of lengths N=6, 12, and 18 at
�=0.63 and at �=�MRJ�0.639.

(c)(a)

(d)(b)

FIG. 7. �Color online� System configuration of a typical �randomly selected� frame from MC simulations on the N=12 system at the MRJ
state. �a� coordinates of sphere centers are subjected to periodic boundary conditions �i.e., wrapped within the simulation cell� and sites of
chains that form closed loops are colored differently, �b� coordinates of sphere centers are fully unwrapped in space and each site is colored
according to its chain, and �c� only chains �unwrapped in space� that form closed loops are shown. In panel �d�, the backbones of the same
loop-forming chains are represented as a stereo pair. In this specific example 8 out of 100 polymers exhibit ringlike chain architecture �R
=1�. Images �a�–�c� are created with the VMD software �60,61�.
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stereo pairs �panel �d��. In this specific MC system configu-
ration, 8% of the chains adopt conformations that correspond
to loops �r=1�.

Our present result seems to deviate from the analysis of
Donev et al. �2� who found open clusters �in the form of
chains� of up to five contacting particles to be the most
prevalent geometrical pattern. We surmise that their lack of
success in their search for closed loops may have been
caused by the practical impossibility of carrying out a graph
analysis to the required depth �in their studies tolerance for
the detection of contact neighbors is up to machine accu-
racy�. The strength of using the �chains

MRJ ensemble for eluci-
dating such “far-neighbor” structural issues is that �intramo-
lecular� neighbors are trivially known by construction �as a
direct consequence of chain connectivity�, so that no search
analysis is required and numerical precision is not a limita-
tion. For example, in Ref. �59�, typical tolerances for neigh-
boring particles to be considered as forming a tetrahedron are
up to nine orders of magnitude less stringent than in Ref. �2�.
It is not surprising that the respective authors draw different
conclusions. As pointed out in Ref. �2�, this issue of numeri-
cal accuracy may become the limiting factor in the elucida-
tion of structural aspects in hard-sphere systems. Although
the �chains

MRJ ensemble does not allow a quantitative prediction
of peak intensities, it bypasses several vexing numerical
problems in the detection of geometric patterns and qualita-
tive features in MRJ structures.

Of particular importance for the prediction of mechanical
properties of dense random packings is the average number
of contacts or the mean coordination number 	Z
. Although
its geometrical definition is unproblematic, the precise calcu-
lation of the mean coordination number is by no means
trivial, especially for experimental samples �7,10�. This nu-
merical ill-definition stems from the fact that a tolerance
�“gap”� has to be defined and used as the threshold below
which a pair of spheres is considered to be contacting neigh-
bors. It is widely accepted from numerous independent stud-
ies that jammed random packings of monomeric hard
spheres fulfill the isostatic condition of having an average
coordination number 	Z
=2d, where d is the dimensionality
of the system �2,7,10�. In Fig. 8 we present the cumulative
coordination number as a function of the contact gap be-
tween spheres as obtained from present MC simulations on
the N=24 system at �=0.63 and at the MRJ state. It is im-
mediately apparent that for small gaps �10−4 ,10−3� there is a
significant difference in the qualitative and the quantitative
behaviors of the two systems. For the dense one ��=0.63� at
very small gaps 	Z
�2 resulting from the “inherent connec-
tivity,” as expected in chain systems due to the imposed con-
nectivity, for all sites except chain ends which are inherently
connected to a single sphere �	Z
=1�. The cumulative coor-
dination continuously increases as the gap �tolerance� for in-
tersphere distances is made less strict �i.e., detection of
neighbors at further distances�. In sharp contrast the mean
coordination number at the MRJ state for tolerances about
10−4 is slightly smaller than 4 �a value which is twice as high
as the expected inherent coordination� with a trend to rapidly
increase. At gaps on the order of 10−3 �which is the order
magnitude of the accuracy of the present MC simulations�,
the cumulative 	Z
 reaches a plateau value of 6 �for a rela-

tively small range of gaps from contact�, as expected by the
isostaticity condition and as observed in simulations and ex-
periments of jammed random packings of single-sphere ana-
logs �2,7,10�. The significant qualitative differences in the
coordination number and accordingly in the fulfillment of the
isostaticity condition between dense ��=0.63� and jammed
��=�MRJ� chain configurations are evident from the connec-
tivity graphs in Fig. 9. There, we present system configura-
tions in a ball&stick representation �in which sphere radii
have been appropriately reduced for clarity� by taking into
account the inherent coordination as imposed by chain con-
nectivity and by detecting the contacting neighbors based
solely on proximity criteria independent of chain connectiv-
ity. For the latter the threshold value for the detection of a
bond is taken equal to the gap required for 	Z
 to reach the
expected plateau value of 6 at the MRJ state as shown in Fig.
8. It is immediately apparent that while the inherent coordi-
nation is obviously independent of the volume fraction and
the same in both cases, the connectivity network as quanti-
fied by the cumulative coordination is far richer at the MRJ
��=0.639� state than at �=0.63.

We should particularly note that in the work of Donev et
al. �2� the computations are so accurate that they are able to
recover the plateau of 6, and thus verify the isostaticity of the
jammed packings of monomeric hard spheres for gaps as low
as O�10−12�. Our present results fall short of such a high
numerical precision due to obvious computational demands
related to the modeling of macromolecular counterparts.
Simulations are currently in progress in order to generate
jammed random packings of hard-sphere chains to full nu-
merical precision.

IV. CONCLUSIONS

We have presented results about the salient structural fea-
tures of jammed random packings of linear freely jointed

FIG. 8. �Color online� Cumulative coordination number Z as a
function of the gap between spheres �r−�� in logarithmic-linear
scale from MC simulations on the N=24 system at volume fractions
�=0.63 and �=�MRJ�0.639. Also shown by the horizontal dotted
line is the theoretical expectation of Z=2d from the isostatic con-
dition where d is the dimensionality of the system.
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chains of tangent hard spheres as obtained from very long
MC simulations. We have shown that the chain configura-
tions at the highest simulated volume fraction remain disor-
dered and jammed by continuously tracking the evolution of
the CCE norms and the portion of flippers, respectively. The
pair radial distribution function near the split-second peak is
in striking agreement with the corresponding one obtained
for monatomic analogs at the MRJ state. We further detect a
large number of linear chains that adopt conformations that
correspond to closed loops, a trend that increases signifi-
cantly as we approach the MRJ state. Our generated and
relaxed chain packings at the MRJ state unavoidably lack the
numerical accuracy or detail achieved in recent state-of-the-
art modeling studies of monatomic analogs by Donev et al.
�2� However, we are still able to detect significant differences
in the contact network between dense and jammed disor-
dered chain packings and to confirm that the isostaticity con-
dition for the contact network at the MRJ state is fulfilled.
Based on the above findings, we propose an exact correspon-
dence between the ensembles of monatomic hard spheres
and of hard-sphere chains that offers insights for the struc-
tural characteristics of the MRJ state. We have shown that
random assemblies of monomeric hard spheres and of chains
of tangent hard spheres share several key structural charac-

teristics at the MRJ state. It is thus established that the struc-
tural behavior at the MRJ state in many key aspects is gen-
eral and universal, being affected neither by the holonomic
constraints imposed by chain connectivity nor by the simu-
lation protocol employed for the generation of the samples.
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APPENDIX

The goal of this appendix is to make precise the relation-
ship that exists at the MRJ state between the ensemble of
configurations of the hard-sphere chain system �chains

MRJ and
the ensemble �ss

MRJ of configurations of the monatomic hard-
sphere system. A key feature of the statistical mechanics of
jammed systems is that, although a great deal of numerical
evidence is available for some of the most basic results �e.g.,
the value of the volume fraction occupied by the spheres at

(b)

(a) (c)

(d)

FIG. 9. �Color online� System
configurations at �left: �a� and
�b��: �=0.63 and �right: �c�
and �d��: �=�MRJ=0.639. The
ball&stick representation is
adopted with reduced sphere ra-
dius for visual purposes. Sites are
colored according to the identity
of their parent chain �online ver-
sion�. Bonds are constructed
according to �top: �a� and �c�� the
“inherent coordination” as im-
posed by the double tangency
condition as a result of chain con-
nectivity and �bottom: �b� and �d��
the proximity condition indepen-
dent for a pair being in the same
or different chains. In the latter
case �right panels� the threshold
value for the identification of a
bond is the value for which the
plateau of Z=6 is obtained for the
cumulative coordination at the
MRJ state �see also Fig. 8�. A
bond that is affected by periodic
boundary conditions appears as a
dangling bond emanating from
one site of the bonded pair. Image
is created with the VMD software
�60,61�.
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the MRJ, the pair radial distribution function�, no analytical
derivation has yet been found for them. In the following we
will proceed pragmatically by accepting a numerically
proven observation as a highly plausible postulate in which
to build the correspondence between configurations of mo-
nomeric spheres and of chains of spheres.

Let a given configuration of the system composed of Nsites
identical hard spheres at the MRJ state in a fixed volume V
be labeled by the index j �see Fig. 2�. As both Nsites , V
→�, �→�ss

MRJ. This jth configuration is fully described by
the list R j �of length 3Nsites� of the position vectors of the
centers r�i� of its Nsites spheres, i.e., R j ���i=1

Nsitesr�i�. Then,
�ss

MRJ��R j is the complete set, or ensemble, of configura-
tions of the Nsites hard spheres at the MRJ state. Transforma-
tions of R j by the �continuous� translation, proper and im-
proper orthogonal, and �discrete� subindex permutation
groups are excluded from �ss

MRJ. Each R j in �ss
MRJ is then a

physically unique member of this ensemble. Analogously,
each element of the ensemble �chains

MRJ is fully characterized by
the set of position vectors R j of the Nsites spheres that build
the chains and a matrix �62� Ck �of size Nsites�Nsites� of
sphere labels that defines the connectivity among the
spheres: �chains

MRJ ���R j ,Ck�. Let us also accept the following
postulate, the validity of which will be discussed below:

Postulate. For every configuration R j ��ss
MRJ, it is pos-

sible to generate a number n�R j� of configurations �R j ,Ck�
��chains

MRJ that share R j and differ only in Ck, and this number
n�R j� of configurations is of the same order O�¯ � �in
Bachmann-Landau notation �63�� for all configurations R j
��ss

MRJ.
Regarding the validity of the Postulate, although no gen-

eral analytical proof exists for it, algorithms that able to link
the individual spheres of an MRJ configuration R j ��ss

MRJ

into chains of predetermined length are known and have
been shown to work in all specific cases �56�. Furthermore,
for a system composed of Nsites hard spheres at the MRJ, the
number n�R j� of connectivity matrices, i.e., the number of
possible ways of connecting the Nsites spheres so as to form
Nchains chains of length N, such that NchainsN=Nsites, is given
by the following mean-field estimate �64�:

n�R j� = NNchains� 	Z
 − 1

Nsites
�Nchains�	Z
−1�

. �A1�

In practice, for a given R j ��ss
MRJ, algorithms in combinato-

rial geometry algorithms are able to generate a number of
connectivities, which scale at least exponentially with the
number of spheres: n�R j��O�exp�Nsites��. There is thus, in
addition, overwhelming numerical evidence of the correct-
ness of the Postulate. It is in fact a very weak assumption,
and, as a consequence, it is very often assumed to be “self-
evident” by physicists �64�.

The first implication of the postulate is that the volume
fraction � occupied by the hard spheres at the MRJ state
is the same both for monatomic �single� hard spheres and
for linear chains of hard spheres �chains

MRJ =�ss
MRJ. The Pos-

tulate guarantees the condition �chains
MRJ ��ss

MRJ. It is however
trivial to show that �chains

MRJ ��ss
MRJ must also hold: if we

assume �chains
MRJ 	�ss

MRJ �strict inequality�, there would exist an
ensemble in which hard-sphere chains would pack strictly
more densely than single spheres. One could then remove the
bonds in all chains in each configuration of this ensemble
�65�. The result would be an ensemble of hard spheres of
the same density as the starting chain system, in contradic-
tion with the hypothesis. Thus, �chains

MRJ =�ss
MRJ must hold.

Recent numerical evidence �40� for �chains
MRJ =�ss

MRJ is
in agreement with this equality, which further strengthens the
plausibility of the Postulate.

The point we want to address in this appendix is a
straightforward one that involves the cardinality �in loose
terms, the size� of the ensembles. In the thermodynamic
limit, the ensemble of single-sphere �monomeric� configura-
tions �ss

MRJ is an infinite set which has the cardinality of the
continuum �1. As a consequence of the Postulate, we can
associate with each R j ��ss

MRJ a number of configurations
�R j ,Ck���chains

MRJ . In the thermodynamic limit Nsites , V→�,
this set of chain configurations associated with one specific
R j ��ss

MRJ is also of infinite size, given by limNsites→� n�R j�,
but it is a countably infinite set, i.e., its cardinality is �0 and
not �1 as it would be for the power set �the set of all possible
subsets� of the Nsites spheres. This is a consequence of the
appearance of Nsites in Eq. �A1� and ultimately of the exis-
tence of connectivity. Hence, the ensemble of chain configu-
rations �chains

MRJ has the cardinality of the Cartesian product of
two infinite sets, one of cardinality �1 and one of �0, which
is again �1 �in compact notation �1�0=�1� �66�. Further-
more, the randomness of the MRJ state, i.e., the absence of
distinguished configurations in �ss

MRJ, guarantees that the
scaling of n�R j� with Nsites �Eq. �A1�� must be the same for
all R j ��ss

MRJ.
Thus, the relationship that exists at the MRJ state between

the ensemble of configurations of the hard-sphere chain sys-
tem �chains

MRJ and the ensemble �ss
MRJ of configurations of the

monatomic hard-sphere system is a many-to-one �surjective�
correspondence between the members of these two en-
sembles. Every member of �chains

MRJ is mapped onto a unique
element of �ss

MRJ by the surjective correspondence
Fchains→ss :�chains

MRJ →�ss
MRJ, �R j ,Ck��R j. As a consequence,

�chains
MRJ splits in equivalence classes by the action of

Fchains→ss, and every R j is a class representative of the
smaller ensemble �ss

MRJ=�chains
MRJ /Fchains→ss formed from

�chains
MRJ by the action of Fchains→ss. Members �chains� of the R j

equivalence class of �chains
MRJ are obtained by connecting the

spheres in the configuration R j ��ss
MRJ in all possible ways

�all possible connectivities Ck� compatible with the pre-
scribed chain length distribution.

We now consider the classical partition functions Z �not to
be confused with the average coordination number 	Z
� of
the ensembles �ss

MRJ and �chains
MRJ . Formally,

Zss
MRJ = �

i=1

��ss
MRJ�

1 = ��ss
MRJ� = �

�

dR3Nsites, �A2�

where ��ss
MRJ� is the size of �ss

MRJ and the entire difficulty of
computing Zss

MRJ lies in determining the region of integration
� in the 3Nsites-dimensional configurational space in which
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�ss
MRJ is defined. The probability distribution function of con-

figurations in this ensemble is uniform and trivially given by

fss
MRJ�R j� =

1

Zss
MRJ, ∀ R j . �A3�

In practice, individual configurations are often generated
with their proper probability �A3� by molecular dynamics
�MD� methods �2,3�.

The partition function of the ensemble �chains
MRJ is formally

identical,

Zchains
MRJ = �

i=1

��chains
MRJ �

1 = ��chains
MRJ � = �

�

dR3Nsitesn�R� , �A4�

where now an additional difficulty appears in the determina-
tion of n�R�. The probability distribution function of con-
figurations in this ensemble is given by

fchains
MRJ �R j,Ck� =

1

Zchains
MRJ , ∀ R j,Ck. �A5�

In practice, generating individual configurations of �chains
MRJ

with their proper probability requires the use of advanced
Monte Carlo �MC� methods �39,40�.

The Postulate guarantees that the partition function �A4�
can be factorized as

Zchains
MRJ = �

i=1

��ss
MRJ�

�
k=1

n�Ri�

1 = �
i=1

��ss
MRJ�

n�Ri� , �A6�

where n�Ri� is the number of configurations �Ri ,Ck�
��chains

MRJ that share Ri and differ only in connectivity Ck �in
other words, the size of the equivalence class represented by
Ri�. We can now write the probability with which a given Ri
appears in the ensemble �chains

MRJ , irrespective of connectivity,
i.e., its marginal or contracted distribution with respect to Ck,
fcchains

MRJ �R j�,

fcchains
MRJ �Ri� =

�
k=1

n�Ri�

1

Zchains
MRJ =

n�Ri�
Zchains

MRJ . �A7�

Thus, whereas in fss
MRJ�R j� all single-sphere configurations R j

appear with equal probability, the same single-sphere con-

figuration R j appears in fcchains
MRJ �R j� with a probability pro-

portional to the number of ways the monatomic spheres in R j
can be connected to form a configuration of chains. Thus, the
configurations R j, which are equiprobable in �ss

MRJ, will have
different weights in �chains

MRJ and will contribute proportionally
to the ensemble average of any given observable A as fol-
lows

	A
chains
MRJ =

n�Ri�A�Ri�
Zchains

MRJ

= fcchains
MRJ �Ri�A�Ri� , �A8�

whereas in the ensemble of single �monomeric� spheres

	A
ss
MRJ =

A�Ri�
Zss

MRJ . �A9�

Ensemble-average properties will be different for monatomic
spheres and for chains because of the different statistical-
mechanical weights of Ri in both ensembles: while a given
single-sphere configuration Ri contributes a �relative� weight
of 1 to the partition function of �ss

MRJ, its contribution to
�chains

MRJ is proportional to the number of ways the spheres in
configuration Ri can be joined obeying a predetermined con-
nectivity. Although in general not very large, such differ-
ences in macroscopic averages must exist and have in fact
been found in the radial pair distribution function, pressure,
etc. �40�. The key point of this appendix is that the �0 car-
dinality of the equivalence classes Ri ensures that the
weights fcchains

MRJ �Ri� are neither divergent nor zero for all Ri.
This conclusion would not be warranted if the equivalence
classes Ri were uncountably infinite in the thermodynamic
limit, i.e., if they had cardinality �1.

Therefore, if a macroscopic observable is found to have a
nonvanishing value in �chains

MRJ , it must necessarily have a
�possibly different� but nonvanishing value in the single-
sphere MRJ ensemble �ss

MRJ. The argument is valid not only
for macroscopic observables, but it applies to structural fea-
tures as well: if a given structural feature exists in �chains

MRJ , it
must necessarily exist in �ss

MRJ as well with a possibly dif-
ferent but nonvanishing probability. Thus, packings of tan-
gent hard-sphere chains at the MRJ state can yield valuable
geometrical insights into the structure of MRJ assemblies of
monatomic hard spheres.
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